Compact Particle Collider - CPC Project

The research background

According to astronomical theories, of all the matter that makes up the entire universe, only about 20% can be observed using current instruments. The remaining 80% is known as "dark matter," which does not absorb, reflect, or emit any light. Its presence can only be inferred through measurements of gravitational effects.

About a decade ago, during the search for the Higgs boson, a substance called "Weakly Interacting Massive Particles" (WIMP) emerged as the top candidate for dark matter. Scientists believed that by creating these particles using the Large Hadron Collider (LHC), they could observe their detailed properties and understand how they contribute to the invisible parts of the universe. So, over the past ten years since the discovery of the Higgs boson, the LHC has been entrusted with the crucial task of uncovering these elusive WIMPs.

Furthermore, scientists have recently observed a new type of "pentaquark" and the first-ever pair of "tetraquarks," including a novel type of tetraquark. Three new members have been added to the list of newly discovered hadrons at the LHC, bringing the total number of observed hadrons to 21, each with its unique properties. Researchers are excited about these three new discoveries.

Pentaquark particles are "subatomic particles" belonging to the family of strange hadrons and consist of five quarks (four quarks and one antiquark, giving it a baryon number of 1). Physicists claim that pentaquark particles have existed for many years but have been challenging to detect. Tetraquark states, on the other hand, are hypothetical mesons composed of four quarks.

This new discovery will help physicists gain a better understanding of how quarks combine to form composite particles. Quarks are elementary particles that usually combine in groups of two or three to form hadrons, such as protons and neutrons that make up atomic nuclei. In rare cases, they can also combine to form tetraquark and pentaquark particles, known as "tetraquarks" and "pentaquarks," respectively.

Gemäß astronomischer Theorien kann von der gesamten Materie, die das gesamte Universum ausmacht, nur etwa 20% mit den aktuellen Instrumenten beobachtet werden. Die restlichen 80% werden als "Dunkle Materie" bezeichnet, die keine Lichtstrahlen absorbiert, reflektiert oder emittiert. Ihre Existenz kann nur durch Messungen der gravitativen Effekte abgeleitet werden.

Vor etwa einem Jahrzehnt, während der Suche nach dem Higgs-Boson, tauchte eine Substanz namens "schwach wechselwirkende massereiche Teilchen" (WIMP) als Top-Kandidat für Dunkle Materie auf. Wissenschaftler glaubten, dass sie durch die Erzeugung dieser Teilchen mithilfe des Large Hadron Collider (LHC) deren detaillierte Eigenschaften beobachten und verstehen könnten, wie sie zu den unsichtbaren Teilen des Universums beitragen. So wurde dem LHC in den letzten zehn Jahren seit der Entdeckung des Higgs-Bosons die entscheidende Aufgabe übertragen, diese schwer fassbaren WIMPs aufzuspüren.

Des Weiteren haben Wissenschaftler kürzlich einen neuen Typ von "Pentaquark" und das allererste Paar von "Tetraquarks" beobachtet, einschließlich einer neuartigen Art von Tetraquark. Drei neue Mitglieder wurden der Liste der neu entdeckten Hadronen am LHC hinzugefügt, wodurch sich die Gesamtzahl der beobachteten Hadronen auf 21 erhöht, von denen jedes seine eigenen einzigartigen Eigenschaften besitzt. Forscher sind begeistert von diesen drei neuen Entdeckungen.

Pentaquark-Teilchen sind "subatomare Teilchen", die zur Familie der seltsamen Hadronen gehören und aus fünf Quarks bestehen (vier Quarks und ein Antiquark, was ihnen eine Baryonenzahl von 1 verleiht). Physiker behaupten, dass Pentaquark-Teilchen seit vielen Jahren existieren, aber schwer zu entdecken sind. Tetraquark-Zustände hingegen sind hypothetische Mesonen, die aus vier Quarks bestehen.

Diese neue Entdeckung wird den Physikern dabei helfen, ein besseres Verständnis dafür zu erlangen, wie sich Quarks zu komplexen Teilchen verbinden. Quarks sind elementare Teilchen, die normalerweise in Gruppen von zwei oder drei zusammenkommen, um Hadronen zu bilden, wie beispielsweise Protonen und Neutronen, die die Atomkerne bilden. In seltenen Fällen können sie sich auch zu Tetraquark- und Pentaquark-Teilchen kombinieren, die als "Tetraquarks" bzw. "Pentaquarks" bezeichnet werden.

CPC (Compact Particle Collider) spec:

Beam type: Photon, heavy ion

Max. energy: 0.14 TeV

Power consumption: 1.8 MW
Circumference: short type

QPU Artificial Intelligence


CAXXÖN LABS created (CAXXÖN QPU AI) “life evolution” system, to find the cure for rare diseases and cancer, and to create eternal evolution for human beings. CAXXÖN quantum technology, let human beings truly achieve “creation out of nothing (life evolution)” in the world of science and technology. When human beings were crazy about GPU computer AI in 2023, CAXXÖN had already created QPU life evolution system in 2019, using photoelectricity to produce quantum entity drugs in the real world.

CAXXÖN LABS hat (CAXXÖN QPU AI) “Leben Evolution” System geschaffen, um die Heilung für seltene Krankheiten und Krebs zu finden und ewige Evolution für die Menschen zu schaffen. CAXXÖN Quantentechnologie lässt die Menschen wirklich “Schöpfung aus dem Nichts (Leben Evolution)” in der Welt der Wissenschaft und Technik erreichen. Als die Menschen im Jahr 2023 verrückt nach GPU Computer AI waren, hatte CAXXÖN bereits im Jahr 2019 QPU Leben Evolution System geschaffen, das Photoelektrizität nutzt, um Quanten-Entität-Drogen in der realen Welt zu produzieren.

Light-Delivered Metabolites Technology And Space Trips


With Artemis missions, NASA will land the first woman and first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever before. We will collaborate with commercial and international partners and establish the first long-term presence on the Moon. Then, we will use what we learn on and around the Moon to take the next giant leap: sending the first astronauts to Mars.

New space era needs new medicine technology

Besides AI robots, sending human - Homo Sapiens into the deep space would always be the ultimate mission. Low gravity, radiation exposure, a six month trip spanning millions of kilometers to Mars. Without some kind of "countermeasures" protection, muscles shrivel, bones weaken, genes damaged and confused, and not enough space to deliver so much medical supplements in the space shuttle, we could count only on the lioght delivering drugs. CAXXÖN LABS have developed a breaking through technology which could deliver the molecules into human body directly. By manipulating the light-electron transforming efficiency, the selected molecules were transformed to photon entangled pairs, interference with visible/ invisible wavelengths, and conducted to the target tissue directly with minimum energy loss. The very fundamentals were based on futuristic quantum physics. -Check here to get more information-.


NASA educator features

Electron Induced Light Transfer Of Metabolites

Light delivering medicines/ metabolites through blood-brain barrier

The delivering of the metabolites or drugs into the proper portion of human body was always a challenging process in modern clinical research. Efficient pathways, minimal dosage, interactive duration time were the most 3 factors we've concerned. CAXXÖN LABS have developed a breaking through pathway which could deliver the molecules into human body directly. By manipulating the light-electron transforming efficiency, the selected molecules were transformed to photon entangled pairs, interference with visible/ invisible wavelengths, and conducted to the target tissue directly with minimum energy loss (less than 0.03%). 

Similar with the light induced electron transfer reactions in nature a various life forms but reversed, the transferred light containing drug molecules could be emitted by specific or common devices such as a light emission monitor. One of the key quantum effects applied in our patented technology and a following brief explain: (reference from Princeton Chemistry's Scholes Group) 

the abrupt loss of phase coherence along some high-frequency vibrational coordinates. This rapid loss of phase coherence originates from the random phase interference of ET reaction pathways provided by the vibrational ladder. The observation steps beyond the conventional Marcus theory and directly reports on the vibrationally driven reaction trajectory from the reactant state to the transition state.

Shahnawaz Rafiq et al. Interplay of vibrational wavepackets during an ultrafast electron transfer reaction, Nature Chemistry (2020). DOI: 10.1038/s41557-020-00607-9